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Key Points

e An updated broadband snow albedo model & statistical fit are presented for the western U.S. mountains Figure 4. Remotely-sensed grain radius (top row) vs. modeled v (d)
e Remotely sensed snow albedo from MODIS shows 4-6% RMSE with no bias validated by measurements over value from in situ measurements of albedo and AVIS (bottom row) 2 s

1600 days at 3 high-altitude sites - | for CUES (a & d); SASP (b & e); and SBSP (¢ & f). The different %
e Reconstructed SWE with 5-11% RMSE and 0-3% bias 1s achieved using remotely sensed albedo colored markers represent the three different levels of filtering
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Snow albedo 1s a dominant control on snowmelt 1n many parts of the world. An empirical albedo decay equation,

developed over 60 years ago, 1s still used in snowmelt models. Several empirical snow albedo models developed igure 3 Scatter plot of modeled vs. measured albedo at CUES

using remotely sensed albedos and those from the BATS aged-
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85, | | |
contributions: (1) an updated albedo model where grain size and light absorbing particle (LAP) content are solved . . . : X 0 %
. . . . L 08! Figure 6 Time series of ., | o Mo SNl i Y
for stmultaneously; (2) multiyear comparisons of remotely sensed and 1n situ albedo measurements from three . | % M, & P
. . T o , : albedo at CUES using x; HE TR L)
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